
Naive Bayes Classifier 



Bayesian Methods 

• Learning and classification methods based on probability 
theory. 

• Bayes theorem plays a critical role in probabilistic 
learning and classification. 

• Uses prior probability of each category given no 
information about an item. 

• Categorization produces a posterior probability 
distribution over the possible categories given a 
description of an item. 



Basic Probability Formulas 

• Product rule 
 

• Sum rule 
 

• Bayes theorem 
 

 

• Theorem of total probability, if event Ai is 
mutually exclusive and probability sum to 1 
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Bayes Theorem 
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• Given a hypothesis h and data D which bears on the 
hypothesis: 

 

• P(h): independent probability of h: prior probability 

• P(D): independent probability of D 

• P(D|h): conditional probability of D given h: likelihood 

• P(h|D): conditional probability of h given D: posterior 
probability 



Does patient have cancer or not? 

• A patient takes a lab test and the result comes back positive. It is 
known that the test returns a correct positive result in only 99% of 
the cases and a correct negative result in only 95% of the cases. 
Furthermore, only 0.03 of the entire population has this disease. 
 

1. What is the probability that this patient has cancer? 

2. What is the probability that he does not have cancer? 

3. What is the diagnosis? 

 



Maximum A Posterior 

• Based on Bayes Theorem, we can compute the Maximum 
A Posterior (MAP) hypothesis for the data 

• We are interested in the best hypothesis for some space 
H given observed training data D. 
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H: set of all hypothesis. 

Note that we can drop P(D) as the probability of the data is constant 

(and independent of the hypothesis). 



Maximum Likelihood 

• Now assume that all hypotheses are equally 
probable a priori, i.e., P(hi ) = P(hj ) for all hi, hj 
belong to H. 

• This is called assuming a uniform prior. It 
simplifies computing the posterior: 

 

 

• This hypothesis is called the maximum 
likelihood hypothesis. 
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Desirable Properties of Bayes Classifier 

• Incrementality: with each training example, 
the prior and the likelihood can be updated 
dynamically: flexible and robust to errors. 

• Combines prior knowledge and observed data: 
prior probability of a hypothesis multiplied 
with probability of the hypothesis given the 
training data 

• Probabilistic hypothesis: outputs not only a 
classification, but a probability distribution 
over all classes 



Bayes Classifiers 

Assumption: training set consists of instances of different classes 

described cj as conjunctions of attributes values 

Task: Classify a new instance d based on a tuple of attribute values   

into one of the classes cj  C 

Key idea: assign the most probable class             using Bayes 

Theorem. 
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Parameters estimation 
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• P(cj) 

– Can be estimated from the frequency of classes in the training 
examples. 

• P(x1,x2,…,xn|cj)  

– O(|X|n•|C|) parameters 

– Could only be estimated if a very, very large number of training 
examples was available. 

• Independence Assumption: attribute values are conditionally 
independent given the target value: naïve Bayes. 
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Properties  

)|( ji cxP• Estimating              instead of                       greatly reduces 
the number of parameters (and the data sparseness). 

• The learning step in Naïve Bayes consists of estimating             
and          based on the frequencies in the training data 

• An unseen instance is classified by computing the class 
that maximizes the posterior 

• When conditioned independence is satisfied, Naïve Bayes 
corresponds to MAP classification. 
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Example. ‘Play Tennis’ data 

Day Outlook Temperature Humidity Wind Play
Tennis

Day1 Sunny Hot High Weak No

Day2 Sunny Hot High Strong No

Day3 Overcast Hot High Weak Yes

Day4 Rain Mild High Weak Yes

Day5 Rain Cool Normal Weak Yes

Day6 Rain Cool Normal Strong No

Day7 Overcast Cool Normal Strong Yes

Day8 Sunny Mild High Weak No

Day9 Sunny Cool Normal Weak Yes

Day10 Rain Mild Normal Weak Yes

Day11 Sunny Mild Normal Strong Yes

Day12 Overcast Mild High Strong Yes

Day13 Overcast Hot Normal Weak Yes

Day14 Rain Mild High Strong No

Question: For the day <sunny, cool, high, strong>, what’s 

the play prediction? 



Naive Bayes solution 

Classify any new datum instance x=(a1,…aT) as: 

 

 

 

• To do this based on training examples, we need to estimate the 
parameters from the training examples: 

 

– For each target value (hypothesis) h 

 

 

 

– For each attribute value at of each datum instance 
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Based on the examples in the table, classify the following datum x: 

x=(Outl=Sunny, Temp=Cool, Hum=High, Wind=strong) 

• That means: Play tennis or not? 

 

 
 

• Working: 
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Underflow Prevention 

• Multiplying lots of probabilities, which are 
between 0 and 1 by definition, can result in 
floating-point underflow. 

• Since log(xy) = log(x) + log(y), it is better to 
perform all computations by summing logs of 
probabilities rather than multiplying 
probabilities. 

• Class with highest final un-normalized log 
probability score is still the most probable. 
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